
 

 



Approach 
Our group adopted the use of a risk register using Software Engineering[1] as a guideline 
which was applied to our risk management strategy. Risks were identified collaboratively 
during the requirements and plans to mitigate these risks were reviewed at our bi-weekly 
meetings. At each of the meetings we would evaluate each risk based on the likelihood and 
impact using a simplified 3-point scale: Low, Medium and High and help to see which risks 
needed to be prioritised. 
 
The justification for our risk management plan was to accurately: identify, analyse, mitigate, 
monitor and dedicate ownership of each unique risk that happened during the development 
of our project. 

Process 
1.​ Identification - Thinking of different types of risks that may come up in the project as 

well as adding new risks which appeared throughout the project. 
2.​ Analysis - What is the likelihood of the occurrence and how it will impact the project. 
3.​ Mitigation - What can be done to minimise the impact of the risk and help prevent this 

happening again in the future. 
4.​ Monitoring - Bi-weekly review of the risk register and adding new risks if any were 

identified. 
5.​ Ownership - Each risk was assigned to a team / team member to oversee. 

 
After this process was completed, the risks were continued to be monitored by each unique 
owner and discussed at the bi-weekly meetings to see how progress was being made on 
each of the risks. 

Risk Register 
1.​ Risk ID - A numerical ID given to each risk which helps to track risks throughout the 

project. 
2.​ Type - What type of risk it is. It is split into three distinct categories: Business, 

Product and Project. 
3.​ Description - A short write up of what each risk is about. 
4.​ Likelihood - The chances of one of these risks happening or recurring throughout the 

project. 
5.​ Severity - How much of an impact can be done each risk will make to the project. 
6.​ Mitigation - Solutions that can be done to either prevent the risk happening again or 

minimise the effect. 
7.​ Owner - Who will be responsible for each risk. 

 

Risk 
ID 

Type Description Likelihood Severity Mitigation Owner 

R1 Product 
and 
Project 

Version control 
conflicts when 
multiple 
members edit at 
the same time 

L M Effective 
communication 
amongst the 
group to prevent 
conflicting 
versions 

Aiden 

1 



R2 Project Members 
absent for 
various reasons 

H H Reassignment of 
tasks and roles 
+ work to be 
done on a 
shared drive to 
track progress 

Euan 

R3 Project Underestimating 
time required for 
key and core 
game 
mechanics 

H H Setting weekly 
specific goals, 
progress is 
discussed at 
meetings 

Josh 

R4 Project Assets were all 
made by the 
group not 
sourced which 
took a while 

H L Will took the 
lead and his 
other initial 
workload was 
disseminated  

Will 

R5 Project JAR does not 
run consistently 
across Windows 
/ Mac / Linux 

L H Avoided OS 
specific 
dependencies 

Aiden 

R6 Business Misinterpreting 
client 
expectations for 
events/difficulty 
amongst the 
group 

L M Documented the 
client meeting 
and clarified with 
each other 

Charlie 

R7 Project Poor team 
communication 
resulting in 
missed 
meetings and 
unclear tasks 

M M Bi-weekly set 
meetings + table 
showing what 
everyone’s tasks 
and roles are 

Josh 

R8 Product Gameplay bugs 
affect core 
mechanics 

H M Manual weekly 
testing done by 
all of the group 

Marcus 

R9 Product Low code 
quality / 
inconsistent 
style 

M M Coding style 
standardised 
and reviewed 
weekly 

Marcus 

2 



R10 Product Lack of early 
user feedback 
before handover 

L M Early testing 
amongst friends 
and peers, 
feedback 
documented 

Charlie 

R11 Project Risks were not 
identified at the 
start of the 
project 

M M Risks recorded 
and identified 
throughout the 
project 

Harri 

R12 Product Lack of prior 
experience with 
LibGDX 

H L Those with 
experience took 
the lead 

Aiden 

R13 Product Performance 
issues across 
different 
hardware 

H L Tested across 
multiple different 
hadrwares 

Marcus 

R14 Project Documentation 
inconsistent with 
the code (Not 
updated UML 
Diagrams) 

M H Documentation 
done in tandem 
with 
implementation 

Zach 

R15 Project Game files lost 
due to 
corruption 

L H Regular copies 
of the game 
saved 

Aiden 

R16 Project Members falling 
behind due to 
prioritising other 
academic 
workload / other 
commitments 

H L Good 
communication 
and workload 
shared 
accordingly 

Josh 

R17 Product Dependencies 
and 3rd party 
libraries become 
incompatible / 
unavailable 

M H Alternative 
options 
considered and 
downloading 
copies of the 
dependencies 

Aiden 

 
 

3 



Bibliography 
[1] Sommerville, Ian, “Software Engineering,” Pearson Education, 2015 
 

4 


	Approach 
	Process 
	Risk Register 
	Bibliography 

