

Introduction
Our game “All-Nigher” is a 2D Maze game set in a university. To prioritise our developer
resources, we’ll be using the LibGDX library, saving us time by not needing to re-invent the
wheel. Our architecture will be main event-driven, choosing to go this route due to
LibGDX’s lack of a main loop[1].

Design Languages and Tools
To create our class diagrams, we used the Unified Modeling Language (UML), using the
PlantUML language to create these diagrams using text. By using a programming language
and text to generate these diagrams instead of visual tools and editors, we can create class
diagrams much more efficiently. To render the diagrams we used PlantText, an online
PlantUML text editor. Alternatively, we could’ve used an offline application to render these
diagrams as a safety measure in case we did not have internet access.

Initial Architecture

Screens

Figure 1: Simple UML class diagram of our game’s architecture

We chose to start off with an abstract representation of our game, which we would be able to
expand as our needs during development evolved. At the core of our game lies an interface
containing key methods and data used across our game’s screens. Inside this interface, we
placed many of LibGDX’s provided classes, such as input processing to detect key presses
and mouse clicks, and the standard Screen class. Meanwhile, the Main class, a direct child
of LibGDX’s Game class, is the heart and entry point of our game.

1

The composite relationship between the Main class
(entry point of the game) and the DefaultScreen
interface shows how interlinked these two components
are, i.e. without the interface containing basic functions
like input processing, the game wouldn’t be able to exist.

Flow
Figure 2 displays the transitions between each of our
game screens. Our game has an event-driven
architecture, so each of these screens effectively acts as
a separate state for our game, making a state diagram a
good fit. Further verifying the event-driven nature of our
game, LibGDX itself is also event-driven i.e. there is no
“main loop” that renders each frame, instead rendering
every time an event occurs[1].

Final Architecture

Screens

Figure 3: Final class UML diagram of our game screens

2

We implemented new screens such as BaseGameScreen which is now a central class of
shared attributes (camera, player, world, viewport, HUD, batch) as well as a common setup
logic for gameplay. This extends LibraryScreen and OutdoorScreen and they inherit its
reusable methods and shared functionality. We also removed PauseScreen as it was a
redundant class in implementation due to pause logic being handled by UI overlays of
existing screens such as LibraryScreen and OutdoorScreen. Now that pausing the game is
built directly into gameplay screens, the system is less complicated, and the player benefits
from immediate and seamless transitions.

Moreover, we added the Disposable interface necessitating every screen implements
cleanup logic, which avoids memory leaks and ensures proper removal of assets when
screen is off or changed, subsequently improving memory efficiency and performance.

Further to the aforementioned, we have expanded the use of interfaces, such as Screen and
InputProcessor, so that every screen consistently responds to user actions and manages
states effectively. This event-driven architecture allows for different screen types to be
extended or swapped with ease, while keeping code organised and future
testing/improvement simple.

In conclusion, these improvements have made the system more maintainable and modular,
as well as making screens more efficient and flexible. The system can be expanded in future
and can be relied on for stable and smooth gameplay, as it has adopted a standardised
event-driven approach, ensured effective resource management, and organised a shared
logic across screens[1].

Entity

Figure 4: UML class diagram of our entity classes

In addition to our event-driven architecture, we implemented some elements of
Entity-Component system (ECS) architecture.

3

MapEntity acts as a component for entities that exist inside the world/game map, whilst
INPC acts as a separate component to entities which are not the player. By using MapEntity
and INPC as components, it allows for future expandability to our game through new
characters that exist on the map, and crucially, other non-player characters (NPC).

We didn’t include ECS in our initial architecture, initially just having a Player class which
would react to events. Over time however, it became more visible to us that using an ECS
architecture instead of an event-driven architecture would be more viable, once again for its
expandability, which would end up proving useful as we added a librarian NPC to our game,
which would’ve been more complicated had we used an independent Player event-driven
class[2].

Requirements

ID Architectural Link

UR_SCREEN_SCALABILITY FitViewport, OrthographicCamera, and
resolution-aware screen classes such as
BaseGameScreen with its inheriting screens
ensure the game scales appropriately and remains
legible on different screen sizes.

UR_FAMILY_FRIENDLY The content itself is inoffensive and neutral by
nature, aligning with BBFC PG rating, and is
suitable for young children. This is reflected in the
architectural implementation across the game
classes/interfaces.

UR_UNIVERSITY_ACCURATE/NFR_U
NIVERSITY_STUDENT_RELATABLE

There is encapsulation of game state and data of
world in GameWorld class, as well as event logic in
screen classes, enabling an accurate
representation of university environments. Assets
are all university themed e.g bookcases, vending
machines, etc.. - see Objects in World.

UR_ASSESSMENT1_EVENTS/FR_EV
ENTS

There is event-driven handling with InputProcessor
and the centralised game state/event management
inside BaseGameScreen - both supporting event
tracking and assessment features - code ensures
that at least one type of each event (positive,
negative, hidden) occurs.

4

UR_TIME_TRACKER/FR_TIME_TRAC
KER

We have the TimerManager class which
centralises all timer states, limit enforcements, and
HUD time rendering logic for every play session.

UR_MAXIMUM_TIME_LIMIT TIME_LIMIT attribute set to 300 seconds (5 mins)
in TimerManager class.

UR_EVENT_COUNTER/FR_EVENT_C
OUNTER

Implemented the EventsCounter class to
effectively count and track the number of events
that occur in a game session, while adjusting HUD
accordingly.

UR_COLOURBLIND_FRIENDLY The Hud class handles UI rendering supporting
customisable colouring, ensuring high contrast and
accessibility for users with colour blindness.

UR_MULTI_OPERATING_SYSTEM_C
OMPATIBLE

All classes, game logic, and UI rendering are built
using LibGDX, which natively supports MacOS,
Windows, and Linux.

UR_BEGINNER_DIFFICULTY Architecture of the game is designed in such a way
where 70% of responses of initial public game
testing found the game balanced in regard to
difficulty, satisfying the requirement.

UR_LEGIBLE_TEXT The Hud class displays all on-screen text using
scalable, high-contrast fonts using BitmapFont
rendering - this ensures legibility across different
resolutions and display sizes throughout the game
session.

UR_FILE_SIZE The Disposable interface ensures that resources,
such as fonts, textures, and music, are only loaded
when needed and are properly removed. This
minimises memory leaks and reduces
unnecessary memory usage, subsequently
keeping the overall file size of the game down.

5

Bibliography
[1] libGDX, “The life cycle - libGDX,” 2025. [Online]. Available:
https://libgdx.com/wiki/app/the-life-cycle

[2] Wikipedia, “Entity Component System,” 2025. [Online]. Available:
https://en.wikipedia.org/wiki/Entity_component_system

6

https://libgdx.com/wiki/app/the-life-cycle#:~:text=libGDX%20is%20event%20driven%20by,of%20such%20a%20main%20loop.
https://en.wikipedia.org/wiki/Entity_component_system

	Introduction
	Design Languages and Tools
	Initial Architecture
	Screens
	Flow

	Final Architecture
	Screens
	Entity

	Requirements
	Bibliography

